Final Project Report

Reverse-Engineering Ray-Ban Metas

34371 Communication Network Security, Fall 2025

DTU

I

Michael Xu (s251986)
Hussein Elguindi (s252091)

December 31, 2025

Table of Contents

ADSETACE . ..ottt 2
Technique INEroo 3
Security Framework & Mechanismsoooiiiiiiiiit 3
Bluetooth Low Energy (BLE) for Controlcoooiiiiii i 3
Wi-Fi for Data Transportooiiii e 3
Usage In J0T . ..o 3
VUINErabilitiesottt ettt 4
Case 1: The “Just Works” Downgrade (MITM)ooiiuuitieit e ean 4
Case 2: Wi-Fi De-authentication & Protocol Handoff, 4
Attacker’s Perspective: Experiments to Reproduce Attacksccoooiiiiiiiiiiiiiiiii i 5
Required TOOlSt e 5
Software StACK ... oo 5
AtACK FlOW . .. 5
Defender’s Perspective: COUNEIMEASUIESttt ettt e e et e e et iaaaeeeees 7
Implement Out-of-Band (OOB) Pairinguuuuuuue e 7
Application-Level ENCIYPLION 7
Management Frame Protection (802.11W)iieetieet it 7
Individual Contributionso o 8
Michael ... 8
HUSSEIN ..o 8
Companion App Decompilationoooiiiiiiiii i 9
GATT Endpoints and Characteristicsooiuiiiiiii i 9

GO e 11
Dle CharaCt e St il Py c ettt ettt e e e e e 11

SOUT LS . .ttt 13

Abstract

The Ray-Ban Meta smart glasses represent a significant evolution in consumer IoT, integrating high-
definition video capture, open-ear audio, and Al assistants into traditional eyewear frames. While
these devices offer seamless connectivity through the proprietary Meta View companion app, their
heavy reliance on wireless data transmission raises critical questions regarding user privacy and
protocol security.

This project aims to reverse-engineer the communication stack of the Ray-Ban Meta glasses to
assess their resilience against unauthorized interception and manipulation. Our research focuses on
two primary security objectives:

1. Unsanctioned Media Extraction: Demonstrating the feasibility of intercepting and extracting
audio or video payloads directly from the device without authentication from the companion
application.

2. Remote Command Injection: Attempting to trigger device actions—such as pausing media or
modifying volume levels on the paired device—without physical interaction or valid app
commands.

To achieve this, we will analyze the device’s Bluetooth protocol stack, with a specific focus on RTP
(Real-time Transport Protocol), AVCTP (Audio/Video Control Transport Protocol), A2DP, L2CAP,
and BLE. Additionally, we aim to inspect the Wi-Fi Direct mechanisms utilized for high-bandwidth
media synchronization, time permitting. This report documents our methodology, packet analysis,
and the security implications of our findings.

https://www.meta.com/smart-glasses/

Technique Intro

)

Audio/Video Stream
Action Commands

LA o

Firmware Updates
k Image/Video Upload

Security Framework & Mechanisms

The Ray-Ban Meta smart glasses utilize a hybrid “Dual-Homing” network architecture to balance
power consumption with bandwidth requirements. The security framework is divided across two
primary protocols:

Bluetooth Low Energy (BLE) for Control
« The device uses BLE for the initial handshake, status updates (battery, connectivity), and
command execution.

» Privacy: To prevent persistent tracking, the glasses utilize Resolvable Private Addresses
(RPA), rotating their MAC address periodically (e.g., 73:ee:69... to 98:ab:54...).

» Encryption: The pairing process adheres to the LE Secure Connections standard, utilizing
Elliptic Curve Diffie-Hellman (ECDH) for key exchange. This protocol ensures that shared
session keys are generated mathematically on both devices without being transmitted over the
air, protecting against passive eavesdropping.

Wi-Fi for Data Transport

« For high-bandwidth tasks like “Live Video Streaming” and “Importing Images,” the glasses initiate
a Protocol Handoff. The glasses act as a SoftAP (Software Access Point), and the smartphone
connects to this temporary Wi-Fi network to transfer media files.

Usage in IoT

This architecture represents a classic “Companion Device” model in IoT. The smart glasses act as a
headless peripheral that relies on a central gateway (the smartphone running the Meta View app) for
internet connectivity and heavy processing. This creates a dependency where the security of the IoT
device is intrinsically linked to the integrity of the pairing process with the gateway:.

Vulnerabilities

While BLE Secure Connections (Mode 1, Level 4) generally provides strong encryption against
passive sniffing, the security of the connection relies heavily on the Association Model used during
pairing. The strength of the authentication is determined by the I/O capabilities of the devices (e.g.,
presence of a screen or keyboard).

Case 1: The “Just Works” Downgrade (MITM)

The most critical vulnerability identified in our reverse engineering is the reliance on the “Just
Works” pairing association model. Because the Ray-Ban Metas lack a display screen or a keypad,
they cannot perform “Passkey Entry” or “Numeric Comparison” to verify the identity of the
connecting device.

« The Flaw: The Bluetooth specification mandates that “No Input / No Output” devices default to
“Just Works.” In this mode, the cryptographic nonce exchange is unauthenticated; the devices
effectively “auto-accept” the connection without user verification.

« Impact: This leaves the device susceptible to Man-in-the-Middle (MITM) attacks. An attacker
can impersonate the phone to the glasses and the glasses to the phone, intercepting all control
traffic.

Case 2: Wi-Fi De-authentication & Protocol Handoff

The handoff mechanism for media transfer introduces a vulnerability in the availability and integrity
of the data stream.

+ The Flaw: The Wi-Fi SoftAP created by the glasses operates on standard 802.11 protocols which
are susceptible to management frame attacks.

« Impact: As demonstrated, the link is vulnerable to De-authentication attacks. An attacker can
inject de-auth frames to forcibly disconnect the smartphone from the glasses during a live stream
or file import, causing a Denial of Service (DoS). Furthermore, if the WPA2 credentials (exchanged
over the potentially compromised BLE link) are intercepted, an attacker could join the network
and access the media files directly.

Attacker’s Perspective: Experiments to Reproduce Attacks

Sniffer MITM Relay Spoofer

Ubertooth NRF52

)

Audio/Video Stream
Action Commands

LA o

Firmware Updates
K» Image/Video Upload

Required Tools

To validate these vulnerabilities, we designed a lab setup comprising three distinct roles:

1. Sniffer: An Ubertooth One used for passive reconnaissance to identify advertising channels and
capture the initial handshake packets.

2. MITM Relay: A laptop acting as the central processing node for the attack logic.

3. Spoofer: An nRF52 Development Kit running the Zephyr OS. This hardware allows for
simultaneous “Central” and “Peripheral” roles, essential for the active relay attack.

Software Stack

« Wireshark, PacketLogger, & Ubertooth tools: For packet analysis.

« Aircrack-ng: For performing the Wi-Fi de-authentication attack.

« Jadx: Used to decompile the Meta Al Android application to map the GATT services and
characteristics.

Attack Flow
The reproduction of the MITM attack follows this execution flow:

1. Reconnaissance: Use the Ubertooth to sniff Advertising Indication packets (ADV_IND) and
identify the target’s MAC address and specific Manufacturer Data.
 See our code to do this with native device Bluetooth capability
« We also experimented with Host Controller Interface (HCI) sniffing using Apple’s
PacketLogger. This was useful for protocol discovery, though it was not useful for extracting
data as that is not logged.

. Cloning: Configure the nRF52 Spoofer to broadcast the exact same UUIDs and Device Name as

the real Ray-Bans.

. Jamming & Disconnect: Force a disconnection of the real glasses (using signal jamming or

simply waiting for the user to cycle power).

. The Relay (MITM):

« The Victim (iPhone) scans and connects to our nRF52 (thinking it is the glasses).

+ The nRF52 immediately initiates a connection to the Real Glasses.

+ Due to “Just Works” pairing, the iPhone auto-confirms the connection without requesting a
code.

. Interception: The nRF52 now forwards packets between the two devices, logging sensitive

GATT commands (like “Start Streaming” or Wi-Fi credentials) in the process.

Defender’s Perspective: Countermeasures
To mitigate the vulnerabilities identified in our “Just Works” MITM attack and Wi-Fi handoff
analysis, the following countermeasures are recommended:

Implement Out-of-Band (OOB) Pairing

Since the glasses lack a screen, Meta should utilize OOB pairing to secure the BLE link. This could
involve an NFC tag embedded in the charging case or a QR code in the packaging that contains the
encryption keys. This forces authentication that an MITM attacker cannot replicate without physical
access.

Application-Level Encryption

Do not rely solely on Bluetooth or WPA2 transport security. Sensitive data (like authentication
tokens or media) should be encrypted at the application layer before transmission. Even if the BLE
link is bridged by an attacker, the payload would remain opaque.

Management Frame Protection (802.11w)

To prevent the De-authentication attacks against the Live Video Stream, the SoftAP implementation
should enforce 802.11w (Protected Management Frames), which prevents unauthorized devices from
sending disconnect commands.

Individual Contributions

Michael

Researched the Bluetooth “Just Works” association model to identify the lack of authentication in
IO-constrained devices.

Studied the 802.11 management frame structure to understand how de-authentication frames
could disrupt the SoftAP handoff.

Configured the nRF52 Development Kit with Zephyr OS to act as a spoofer, replicating the glasses’
UUIDs and Device Name.

Attempted to execute the “Just Works” MITM attack simulation to demonstrate how a spoofer
could intercept the connection.

Conducted passive packet sniffing using the Ubertooth One to capture initial advertising packets
and analyze MAC address rotation.

Hussein

Reverse-engineered the “Meta View” Android application using Jadx to inspect the security logic.
Wrote and tested the ble_characteristics.py Python script using the Bleak library to
successfully discover and read from the glasses’ GATT server without the companion app.
Analyzed the BluetoothManager class to understand how the app handles GATT services.
Mapped the obfuscated GATT characteristic UUIDs to the internal “Protocol/Service

Manager” (PSM) definitions (e.g., mapping specific UUIDs to Firmware and Battery services).
Verified the existence of these hidden endpoints by cross-referencing decompiled code with live
Bluetooth scans.

Conducted passive packet sniffing using the Ubertooth One to capture initial advertising packets
and analyze MAC address rotation.

Companion App Decompilation
We used the Jadx Java decompiler to decompile the Meta Al companion app.

GATT Endpoints and Characteristics
We were able to pinpoint parts of the code with handle GATT and BLE characteristics. In addition,
we found that the app abstracts these characteristics into what they call a Protocol/Service Manager

(PSM).
118 public static final void A@@(BluetoothGatt bluetoothGatt, DRb dRb, ED7 ed7) {
119 Exception bleServiceNotFoundException;
120 while (true) {
121 List<CKD> list = dRb.A®S8;
122 if (list.isEmpty()) {
123 return;
124 }
125 CKD ckd = (CKD) AbstractC0@4401n.Ade(list);
126 UUID uuid = (UUID) ckd.A@2;
127 BluetoothGattService service = bluetoothGatt.getService(uuid);
128 if (service == null) {
129 AnonymousClass@@2.A0A(uuid, @);
130 DRJ drj = ed7.A@1;
131 drj.A@9.ABH(AbstractC758431C. A0t (uuid));
132 CKD ckd2 = drj.AoK.get(uuid);
133 if (ckd2 !'= null && ckd2.A03) {
134 ed7.A00.A0) (new BleMultiConnectionManagers$StateMachineMessage.ServiceMissingError(new BleServiceNotFoundException
135
136 list. remove(ckd);
137 if (ckd.Ae3) {
138 bleServiceNotFoundException = new BleServiceNotFoundException("Service not found", AbstractC758431C.AQt(uuid));
139 break;
140 }
141 } else {
142 UUID uuid2 = (UUID) ckd.A®1;
143 BluetoothGattCharacteristic characteristic = service.getCharacteristic(uuid2);
144 if (characteristic != null) {
145 bluetoothGatt. readCharacteriftic(characteristic);
146 return;
147 }
148 AnonymousClass@@2.A0A(uuid2, 0);
149 ed7.A01.A09.A0G(AbstractC758431C. A0t (uuid2));
150 list. remove(ckd);
151 if (ckd.A@3) {
152 bleServiceNotFoundException = new BlePsmCharacteristicNotFoundException(“Characteristic not found", AbstractC7584
153 break;
154 }
155 }
156
157 ed7.A00.A0] (new BleMultiConnectionManager$StateMachineMessage.GattReadError(bleServiceNotFoundException));
158 AB2(dRb, null);
159 }
160
static {
5 EnumC22607BLj enumC22607BLj = new EnumC226@7BLj("PSM", 0);
8 A@4 = enumC22607BLj ;|
15 EnumC22607BLj enumC22607BLj2 = new EnumC22607BLj ("OFFLOAD_PSM", 1);
18 A@3 = enumC22607BLj2;
25 EnumC22607BLj enumC22607BLj3 = new EnumC22607BLj ("RELAY_PSM", 2);
28 A@5 = enumC22607BLj3;
35 EnumC22607BLj enumC226@07BLj4 = new EnumC22607BLj ("FIRMWARE", 3);
38 A@2 = enumC22607BLj4;
45 EnumC226@07BL] enumC226@07BLj5 = new EnumC22607BLj ("TELEMETRY", 4);
48 AB6 = enumC226@7BLj5;
58 EnumC22607BLj [] enumC226@7BLjArr = {enumC226@07BLj, enumC22607BLj2, enumC226
62 A@1 = enumC226@7BLjArr;
68 A0O = C00B.AQ0(enumC22607BLjArr);
}

Notice there is an enum for firmware, in addition to the other PSMs. We were able to read the

firmware version from this endpoint.

Connecting to RB Meta 02P3 (A9F5CF14-EF36-3867-DF25-39610CB4EQ3F). ..
Connected successfully!

--- Characteristics for RB Meta 02P3 ---

[Service] 0000fd5f-0000-1000-8000-00805Ff9b34fb (Vendor speciW Maln PSM
— [char] ®5acbe9f-6f61-4ca9-80bf-c8bbb52991c6 (Unknown)
Properties: notify, read
[VALUE] Hex: 00008100 (Raw: bytearray(b'\x@B\x@B\xSl\xOW Relay PSM
[Char] ¢53673dd-69e0-4a65-b530-6Fffb330bff85 (Unknown)
Properties: read

[Char] f9fbf15d-6cc8-400a-b70a-aa7dcdcaedd8 (Unknown)
Properties: read
[VALUE] String: '' (Raw: bytearray(b'\x04\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x13\x16\x16\x16\x13\x16"'))

[VALUE] Hex: ©201036e2895fd@8bbe1 (Raw: hytearray(b'\xmw O-F-f'l_oad PSM

[Service] 00BO180a-0000-1000-8000-00805f9b34fb (Device Information)
- [Char] 00002226-0000-1000-8000-00805f9b34fb (Firmware Revision String)
Properties: read
L [VALUE] String: '58107710103200160' (Raw: bytearray(b'58107710103200166'))
Device is not connected.
Disconnecting...
Disconnected.

We used our characteristics scanner to map each exposed GATT endpoint to a PSM in our

decompilation. We were able to read from each endpoint. The PSMs were encrypted, but the
firmware version was unobfuscated and matched the version reported in the app.

Finally, we confirmed that the glasses started a WiFi AP and webserver to perform data transfer
such as importing images from the glasses to the companion device.

¢, StaModeDisconnectResponse
¢, StaModeDisconnectStatus
¢, StartAsstStream

¢, StartAsstStreamRequest

¢, StartAsstStreamResponse
¢ StartSoftAp

¢, StartSoftApRequest

¢, StartSoftApRequestV2

¢, StartSoftApResponse

¢, StartSoftApResponseStatus
¢, StartSoftApResponseV2

¢, StartSoftApStatusV2

¢, StartSoftApv2

¢, StartWebserver

¢, StartWebserverRequest

¢, StartWebserverResponse
¢, StartWebserverStatus

¢, StateChange

¢, StopAudioStream

¢, StopAudioStreamRequest

¢, StopAudioStreamResponse
¢, StopSoftAp

¢, StopSoftApRequest

¢, StopSoftApRequestV2

¢, StopSoftApResponse

¢, StopSoftApResponseStatus
¢, StopSoftApResponseV2

¢, StopSoftApStatusv2

10

Code

ble_characteristics.py
Archived as a GitHub Gist

Tool to get BLE device characteristics.

import asyncio
from bleak import BleakScanner, BleakClient

class DeviceBle:
def init (self):
self.client = None
self.device = None

async def select device(self):
print("Scanning for devices (5 seconds)...")
1. Discover all devices
We sort by RSSI (Signal Strength) so the closest device is likely at the top
devices = await BleakScanner.discover(timeout=5.0)
devices.sort(key=lambda d: d.rssi, reverse=True)

if not devices:
print("No Bluetooth devices found.")
return False

2. Print the list
print("\n--- Available Devices ---")
Filter out devices to create a selection list
selectable devices = []
for d in devices:
You can remove the 'if d.name' check if you want to see unnamed devices (MAC only)
if d.name:
selectable devices.append(d)

if not selectable devices:
print("No named devices found.")
return False

for i, dev in enumerate(selectable devices):
print(f"[{i}] {dev.name} ({dev.address})")

3. Get User Input
while True:
try:
selection = input("\nEnter the number of the device to connect to: ")
index = int(selection)
if 0 <= index < len(selectable devices):
self.device = selectable_devices[index]
return True
else:
print("Invalid number. Please try again.")
except ValueError:
print("Please enter a valid number.")

async def connect(self):
if self.device is None:
print("No device selected.")
return

print(f"\nConnecting to {self.device.name} ({self.device.address})...")
try:

self.client = BleakClient(self.device.address)

await self.client.connect()

print("Connected successfully!")
except Exception as e:

print(f"Failed to connect: {e}")

self.client = None

11

https://gist.github.com/HusseinElguindi/be66251534fa519f1b4ddd8f5c1c0c06

async def disconnect(self):
if self.client and self.client.is connected:
print("Disconnecting...")
await self.client.disconnect()
print("Disconnected.")

def decode bytes(self, byte data):
"""Helper to try and make bytes readable"""
1. Try to decode as UTF-8 String (e.g. Model Name)
try:
return f"String: '{byte data.decode('utf-8')}'"
except Exception:
pass

2. If not string, return Integer if small
if len(byte data) == 1:
return f"Int: {int.from bytes(byte data, byteorder='little')}"

3. Fallback to Hex
return f"Hex: {byte data.hex()}"

async def print all characteristics(self):
if self.client and self.client.is connected:
print(f"\n--- Characteristics for {self.device.name} ---")
for service in self.client.services:
print(f"\n[Service] {service.uuid} ({service.description})")
for char in service.characteristics:
print(f" - [Char] {char.uuid} ({char.description})")
print(f" Properties: {', '.join(char.properties)}")
CHECK: Can we read this?
if "read" in char.properties:
try:
READ THE DATA
value bytes = await self.client.read gatt char(char.uuid)

FORMAT THE DATA
decoded val = self.decode bytes(value bytes)

print(f" - [VALUE] {decoded val} (Raw: {value bytes})")
except Exception as e:
print(f" L [ERROR] Could not read: {e}")
else:
print(f* L [SKIP] Not readable")
print("Device is not connected.")

async def main():
ble handler = DeviceBle()

Step 1: User selects device from list
device selected = await ble handler.select device()

if device selected:
Step 2: Connect
await ble_handler.connect()

Step 3: Print Characteristics
await ble_handler.print all characteristics()

Step 4: Clean up
await ble_handler.disconnect()

if name == " main_ ":
asyncio.run(main())

12

Sources

+ A new way to debug iOS Bluetooth® applications (PacketLogger)
« Audio/Video Control Transport Protocol (AVTCP) Specification

« Ubertooth Wireshark documentation

« Meta Al companion app APK source

« GitHub - NullPxl/banrays: Glasses to detect smart-glasses that have cameras. Ray-BANNED
« Assigned Numbers

« THREAT ASSESSMENT ALERT: THE DANGERS OF SMART GLASSES

+ Meta FAQs | Ray-Ban® US

« Bluetooth: Central and Peripheral HRS

» Samples and Demos — Zephyr Project Documentation

« deauthentication [Aircrack-ng]

 Bluetooth® LE secure connections — numeric comparison

» Download Meta Al - Vibes & Al Glasses APKs for Android - APKMirror
« GitHub - skylot/jadx: Dex to Java decompiler

» Ubertooth

+ AWUS036NHA (EOL) — ALFA Network Inc.

13

https://www.bluetooth.com/blog/a-new-way-to-debug-iosbluetooth-applications
http://rfc.nop.hu/bluetooth/AVCTPSpecv1_0.pdf
https://ubertooth.readthedocs.io/en/latest/capturing_BLE_Wireshark.html
https://www.apkmirror.com/apk/facebook-2/facebook-view/
https://github.com/NullPxl/banrays
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Assigned_Numbers/out/en/Assigned_Numbers.pdf
https://www.counterterrorismgroup.com/post/threat-assessment-alert-the-dangers-of-smart-glasses
https://www.ray-ban.com/usa/c/frequently-asked-questions-ray-ban-meta-smart-glasses
https://docs.nordicsemi.com/bundle/ncs-2.6.0/page/nrf/samples/bluetooth/central_and_peripheral_hr/README.html
https://docs.zephyrproject.org/latest/samples/index.html
https://www.aircrack-ng.org/doku.php?id=deauthentication
https://www.bluetooth.com/blog/bluetooth-pairing-part-4/
https://www.apkmirror.com/apk/facebook-2/facebook-view/
https://github.com/skylot/jadx
https://ubertooth.readthedocs.io/en/latest/index.html
https://www.alfa.com.tw/products/awus036nha?variant=36473966166088

	Abstract
	Technique Intro
	Security Framework & Mechanisms
	Bluetooth Low Energy (BLE) for Control
	Wi-Fi for Data Transport

	Usage in IoT

	Vulnerabilities
	Case 1: The "Just Works" Downgrade (MITM)
	Case 2: Wi-Fi De-authentication & Protocol Handoff

	Attacker's Perspective: Experiments to Reproduce Attacks
	Required Tools
	Software Stack
	Attack Flow

	Defender's Perspective: Countermeasures
	Implement Out-of-Band (OOB) Pairing
	Application-Level Encryption
	Management Frame Protection (802.11w)

	Individual Contributions
	Michael
	Hussein

	Companion App Decompilation
	GATT Endpoints and Characteristics

	Code
	ble_characteristics.py

	Sources

